Electronics refers to the flow of charge (moving electrons) through nonmetal conductors (mainly semiconductors), whereas electrical refers to the flow of charge through metal conductors. For example, flow of charge through silicon, which is not a metal, would come under electronics; whereas flow of charge through copper, which is a metal, would come under electrical. This distinction started around 1906 with the invention by Lee De Forest of the triode. Until 1950 this field was called "Radio techniques" because its principal application was the design and theory of radio transmitters, receivers and vacuum tubes.
The study of semiconductor devices and related technology is considered a branch of physics whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses on engineering aspects of electronics.
Electronic devices and components
An electronic component is any physical entity in an electronic system whose intention is to affect the electrons or their associated fields in a desired manner consistent with the intended function of the electronic system. Components are generally intended to be connected together, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly or in more complex groups as integrated circuits. Some common electronic components are capacitors, resistors, diodes, transistors, etc.
Most analog electronic appliances, such as radio receivers, are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage as opposed to discrete levels as in digital circuits.
The number of different analog circuits so far devised is huge, especially because a 'circuit' can be defined as anything from a single component, to systems containing thousands of components.
Analog circuits are sometimes called linear circuits although many non-linear effects are used in analog circuits such as mixers, modulators, etc. Good examples of analog circuits include vacuum tube and transistor amplifiers, operational amplifiers and oscillators.
Some analog circuitry these days may use digital or even microprocessor techniques to improve upon the basic performance of the circuit. This type of circuit is usually called "mixed signal."
Sometimes it may be difficult to differentiate between analog and digital circuits as they have elements of both linear and non-linear operation. An example is the comparator which takes in a continuous range of voltage but puts out only one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch having essentially two levels of output.
[edit] Digital circuits
Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. Most digital circuits use two voltage levels labeled "Low"(0) and "High"(1). Often "Low" will be near zero volts and "High" will be at a higher level depending on the supply voltage in use. Ternary (with three states) logic has been studied, and some prototype computers made.
Computers, electronic clocks, and programmable logic controllers (used to control industrial processes) are constructed of digital circuits. Digital Signal Processors are another example.
Building-blocks:
Highly integrated devices:
- Microprocessors
- Microcontrollers
- Application-specific integrated circuit (ASIC)
- Digital signal processor (DSP)
- Field-programmable gate array (FPGA)
[edit] Heat dissipation and thermal management
Heat generated by electronic circuitry must be disipated to prevent immediate failure and improve long term reliability. Techniques for heat disipation can include heatsinks and fans for air cooling, and other forms of computer cooling such as water cooling. These techniques use convection, conduction, & radiation of heat energy.
[edit] Noise
Noise is associated with all electronic circuits. Noise is defined[1] as unwanted disturbances superposed on a useful signal that tend to obscure its information content. Noise is not the same as signal distortion caused by a circuit.
[edit] Electronics theory
Mathematical methods are integral to the study of electronics. To become proficient in electronics it is also necessary to become proficient in the mathematics of circuit analysis.
Circuit analysis is the study of methods of solving generally linear systems for unknown variables such as the voltage at a certain node or the current though a certain branch of a network. A common analytical tool for this is the SPICE circuit simulator.
Also important to electronics is the study and understanding of electromagnetic field theory.
No comments:
Post a Comment